Preliminary results on modeling current corn yields in Ethiopia

Guillermo A. Baigorria,
Consuelo C. Romero
and
Andualem S. Shiferaw

e-mail: gbaigorria@unl.edu
Weather Station Network
(1980-2010)

- Weather station
- Province boundary
Weather Station’s Area of Influence
(Thiessen Polygons)

- Weather station
- Thiessen boundary
The Soil Atlas of Africa (Jones et al., 2013):

Soils maps derived from several projects covering African continent, such as the Harmonized World Soil Database, the Soil Geographical Database of Eurasia, and the FAO-UNESCO soil map of the World.
Source of soil data:

The reanalyzed soil database of the ISRIC-WISE 1.1 (Romero et al., 2012)

- Source of soil profile data from FAO, ISRIC, and USDA-NRCS; data from this source also found in the African Soil Information Service.

- 1272 soil profile description available for Africa;

- Advantage: soil profile data already in format to be used by DSSAT;

- Data includes detailed information for each soil layer required by the model:

 - Soil depth
 - Soil color and soil albedo (only for topsoil)
 - Clay and silt fraction
 - Hydraulic coefficients –wilting point, field capacity, saturation- estimated!
 - Bulk density
 - Soil organic C
 - Total N concentration
 - pH and CEC
Source of soil data:

- And additional information related to crop growth and development, such as soil fertility factor, mineralization factor, and root growth factor.

- **Example** of a soil profile description in specific format for DSSAT:

```plaintext
*WI_CMTZ062 WISE  LS  175 WISE DATABASE, SOIL TZ062

@SITE  COUNTRY  LAT  LONG  SCS Family
-99  Tanzania  -4.217  33.183  Chromic Cambisol (CMx)

@SCOM  SALB  SLU1  SLDR  SLRO  SLNF  SLPF  SMHB  SMPX  SMKE
BN  0.13  7.70  0.60  76.00  1.00  1.00  SA001  SA001  SA001

@SLB  SLMH  SLLL  SDUL  SSAT  SRGF  SSKS  SBDM  SLOC  SLCL  SLSI  SLCF  SLNI  SLHW  SLHB  SCEC  SADC
20  Ap  0.031  0.127  0.399  0.82  17.64  1.50  0.61  7.00  11.00  -99.0  0.07  5.80  -99.0  3.20  -99.0
40  Bw1  0.026  0.099  0.359  0.55  26.43  1.62  0.22  12.00  5.00  -99.0  0.04  5.50  -99.0  3.20  -99.0
80  Bw2  0.215  0.299  0.358  0.30  0.26  1.62  0.19  19.00  8.00  -99.0  0.03  5.50  -99.0  4.50  -99.0
175  BC  0.210  0.296  0.370  0.08  0.37  1.59  0.10  17.00  18.00  -99.0  0.02  5.80  -99.0  4.70  -99.0
```
Soil map

Province boundary
Overlaying Weather Station’s Area of Influence and Soil Map
(Climate-Soil Units)

- Thiessen boundary
- Soil unit boundary
Genetic Coefficients

*MAIZE CULTIVAR COEFFICIENTS: MZCER045 MODEL

! COEFF DEFINITIONS
! ========= =========
! VAR# Identification code or number for a specific cultivar
! VAR-NAME Name of cultivar
! EXPNO Number of experiments used to estimate cultivar parameters
! ECO# Ecotype code of this cultivar, points to the Ecotype in the
! ECO file (currently not used).
! P1 Thermal time from seedling emergence to the end of the juvenile
! phase (expressed in degree days above a base temperature of 80°C)
! during which the plant is not responsive to changes in
! photoperiod.
! P2 Extent to which development (expressed as days) is delayed for
! each hour increase in photoperiod above the longest photoperiod
! at which development proceeds at a maximum rate (which is
! considered to be 12.5 hours).
! P5 Thermal time from silking to physiological maturity (expressed
! in degree days above a base temperature of 80°C).
! G2 Maximum possible number of kernels per plant.
! G3 Kernel filling rate during the linear grain filling stage and
! under optimum conditions (mg/day).
! PHINT Phylochron interval; the interval in thermal time (degree days)
! between successive leaf tip appearances.

@VAR# VRNAME......... EXPNO ECO# P1 P2 P5 G2 G3 PHINT
1 2 3 4 5 6

| Added by Guillermo Baigorria from Kassie et al. 2014 for Ethiopia |

ET0001 BH-540
 . IB0001 220.1 0.860 840.1 266.2 10.65 38.90
ET0002 Melkasa-1
 . IB0001 101.5 0.750 685.0 375.0 11.65 40.00
Decision Support Systems for Agrotechnology Transfer (DSSAT v. 4.5)
Simulated Corn Yield
(average 1980-2010)

Cultivar: BH-540
Ethiopia’s Corn Production Region

Production unit boundary
Simulated Corn Yield in Ethiopia’s Corn Production Region (average 1980-2010)

Cultivar: BH-540

Corn Yield (dry matter) (tn/ha)

- nd
- 0 - 1.5
- 1.5 - 3.0
- 3.0 - 4.5
- 4.5 - 6.0
- 6.0 - 7.5
- 7.5 - 9.5
Soil map

Country boundary
Weather Station Network

<table>
<thead>
<tr>
<th>Country</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenya</td>
<td>12</td>
</tr>
<tr>
<td>Sudan</td>
<td>4</td>
</tr>
<tr>
<td>Eritrea</td>
<td>2 (+1 only max & min temp)</td>
</tr>
<tr>
<td>Tanzania</td>
<td>0 (6 only rainfall)</td>
</tr>
</tbody>
</table>

Shared data is and will be treated as highly confidential and it won’t be shared if you, your institute or your government requires it.
Preliminary results on modeling current corn yields in Ethiopia

Guillermo A. Baigorria, Consuelo C. Romero and Andualem S. Shiferaw