Economics of Drought Management Strategies

By Harlan Hughes
Professor Emeritus
North Dakota State University

Western Edge Consulting
Laramie, WY

Drought Meeting – Powell, WY
24 September 2012
Background

• Summer 2002 I wrote:
 – Since moving to Laramie, I have become concerned with de-stocking recommendations
 • Little or no focus on the economic consequences
 – Decision to de-populate along with de-stocking in where the big economic costs are generated
 – Could ranchers be walking into an economic firestorm??
Definitions

• De-stocking
 – Removing grazing animals from the grasslands

• De-populating
 – Selling animal from ranch ownership

• Re-populating
 – Adding animals back into the grazing herd
2002 Drought Strategies Identified

• Sandhills of NE Rancher
 – 15% reduction in cow numbers year 2002
 – Winters cow on cornstalks
 • Backed off on replacement heifer calves held back
 • Wants to sell large # cows at cattle cycle price peak

• NC Wyoming Rancher
 – Depopulated 30% 2002
 – AI’ing to get maximum calf price
 • Record calf price in 2004!
 – Shipping cows 135 miles to aftermath grazing
 – Raising some AI bulls
 – Invested savings in high-quality non-ag property and plows earnings back into the ranch operating expenses

• SC Wyoming Rancher
 – Started early weaning 2002 – to feedlot – will continue this
 • Cows can be maintained easier
 – Cows on windowed hay and supplement
 – Depopulated 17%
 • Will repopulate by holding back heifers
 – “is a very slow process with high calf prices”
What we learned from North Dakota’s Droughts in the 1980s

• 1980/81 – ranchers moved cattle south 400-500 miles to grass
 – It was a financial disaster!

• 1988 – Did not move cows south to grass
 – De-populated
 – My economic analysis suggested should have moved animals to grass!

• Why the Difference?

• Conclusion:
 – Optimum drought strategy depends on where we are in the cattle cycle!
Economics of De-populating

• Two costs associated with De-populating
 – Visible costs
 • Selling bred cows at fire-sale prices
 • Re-populating with expensive females
 – Invisible (hidden) costs
 • Less calves to sell when it starts raining
 • Less calves to sell when prices go up
 – Invisible costs > Visible costs?
 – Could a rancher’s drought strategy amplify the drought’s negative financial impact?
Economics of Drylotting Beef Cows
(North Dakota State University Research Herd)

• Long-term research trial with drylotting beef cows
 – Tied into irrigated land aftermath feeding
 – Complete control over ration nutrition
 – Economics never quite matched traditional grazing systems – if grass is available

• Drylotting beef cows part of year in a drought can be economically viable
 – Allows you to de-stock
 – But, do not have to depopulate
 • Just keep producing and selling calves
Figure 1. Cattle, slaughter and price cycle relationships

- Rebuilding Stage
- Exhaustion Stage
- Sell-off Stage
- Last Stage

Price

Harvest numbers

Cattle prices

Cattle numbers

No. of head

2012

2020
LET’S LOOK AT EACH DROUGHT INDIVIDUALLY
500-600 Lb Steer Calf Prices
source: PPP-MIS Long Range Prices

Where We Are In The Price Cycle Makes A Difference!
Simulation Results

• Traditional Drought Management Strategy
 – Large negative impact in 2002
 • Low calf prices
 • Low fire-sale price of females
 • High re-population costs
 – Much, much smaller impact in 2006
 • High calf prices
 • Higher fire-sale price of females
 • Lower re-population costs
 – What about 2012 drought?
 • Reasonably good fire-sale prices
 • High calf prices at least through 2014
 • High re-population costs
 • High drought feed costs
 – Where we are in cattle cycle has HUGE impact!
2012 DROUGHT STRATEGY
SIMULATIONS
Projected Purchase Price Of Bred Heifer

<table>
<thead>
<tr>
<th>Years</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$1,750</td>
</tr>
<tr>
<td>2012</td>
<td>$1,600</td>
</tr>
<tr>
<td>2013</td>
<td>$2,100</td>
</tr>
<tr>
<td>2014</td>
<td>$2,200</td>
</tr>
<tr>
<td>2015</td>
<td>$2,000</td>
</tr>
<tr>
<td>2016</td>
<td>$1,900</td>
</tr>
<tr>
<td>2017</td>
<td>$1,800</td>
</tr>
<tr>
<td>2018</td>
<td>$1,700</td>
</tr>
<tr>
<td>2019</td>
<td>$1,600</td>
</tr>
<tr>
<td>2020</td>
<td>$1,500</td>
</tr>
</tbody>
</table>

AVG: $1,800
Heifer Discount

<table>
<thead>
<tr>
<th>Year</th>
<th>Discount ($/Cwt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$18</td>
</tr>
<tr>
<td>2012</td>
<td>$18</td>
</tr>
<tr>
<td>2013</td>
<td>$10</td>
</tr>
<tr>
<td>2014</td>
<td>$5</td>
</tr>
<tr>
<td>2015</td>
<td>$6</td>
</tr>
<tr>
<td>2016</td>
<td>$8</td>
</tr>
<tr>
<td>2017</td>
<td>$10</td>
</tr>
<tr>
<td>2018</td>
<td>$10</td>
</tr>
<tr>
<td>2019</td>
<td>$10</td>
</tr>
<tr>
<td>2020</td>
<td>$10</td>
</tr>
</tbody>
</table>
2012 Drought Strategies Evaluated

• Control
 – 2011 thru 2020 assuming no drought
 – Assumes no increase in feed costs from drought

• Traditional_1 + No Special Repopulation
 – 2012 sold 60 bred cows
 – 2012 held back zero replacement heifers
 – 2013 on back to normal 46 replacement heifers

• Traditional_2 + Buy Back Replacements
 – 2013 – buy 60 bred females to calve in 2014

• Traditional_3 + Raise Back Replacement
 – Raise back 170 heifers: 85 in 2013 and 85 in 2014
ECONOMIC RESULTS
Cash Flow Summary

Control: 2012 No Drought

<table>
<thead>
<tr>
<th>Year</th>
<th>Year</th>
<th>Cow Sales</th>
<th>Calf Sales</th>
<th>Cash Costs</th>
<th>Total Herd</th>
<th>Per Cow</th>
<th>Per Cow</th>
<th>Per Herd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2011</td>
<td>$36,288</td>
<td>$167,881</td>
<td>$153,780</td>
<td>$50,389</td>
<td>$202</td>
<td>$817</td>
<td>$204,169</td>
</tr>
<tr>
<td>2</td>
<td>2012</td>
<td>$40,320</td>
<td>$173,085</td>
<td>$172,961</td>
<td>$40,444</td>
<td>$162</td>
<td>$857</td>
<td>$213,405</td>
</tr>
<tr>
<td>3</td>
<td>2013</td>
<td>$39,816</td>
<td>$171,087</td>
<td>$184,401</td>
<td>$26,501</td>
<td>$107</td>
<td>$850</td>
<td>$210,903</td>
</tr>
<tr>
<td>4</td>
<td>2014</td>
<td>$38,868</td>
<td>$186,727</td>
<td>$159,819</td>
<td>$65,776</td>
<td>$264</td>
<td>$906</td>
<td>$225,595</td>
</tr>
<tr>
<td>5</td>
<td>2015</td>
<td>$38,304</td>
<td>$180,535</td>
<td>$163,470</td>
<td>$55,368</td>
<td>$221</td>
<td>$872</td>
<td>$218,839</td>
</tr>
<tr>
<td>6</td>
<td>2016</td>
<td>$36,288</td>
<td>$173,142</td>
<td>$166,146</td>
<td>$43,284</td>
<td>$172</td>
<td>$834</td>
<td>$209,430</td>
</tr>
<tr>
<td>7</td>
<td>2017</td>
<td>$35,280</td>
<td>$165,749</td>
<td>$168,821</td>
<td>$32,208</td>
<td>$128</td>
<td>$801</td>
<td>$201,029</td>
</tr>
<tr>
<td>8</td>
<td>2018</td>
<td>$35,280</td>
<td>$164,653</td>
<td>$171,496</td>
<td>$28,437</td>
<td>$113</td>
<td>$797</td>
<td>$199,933</td>
</tr>
<tr>
<td>10</td>
<td>2020</td>
<td>$35,280</td>
<td>$150,408</td>
<td>$176,846</td>
<td>$8,842</td>
<td>$36</td>
<td>$740</td>
<td>$185,688</td>
</tr>
<tr>
<td>xxxx</td>
<td>xxxx</td>
<td>$371,004</td>
<td>$1,693,535</td>
<td>$1,691,912</td>
<td>$372,627</td>
<td>$149</td>
<td>$825</td>
<td>$2,064,539</td>
</tr>
</tbody>
</table>
IF YOU DEPOPULATE, THE DROUGHT MAY IMPACT YOU FOR 6-8 YEARS INTO THE FUTURE!
2012 – sold 60 cows
- held back 0 Heifers

10 Yr Invisible Costs = - $346,136
Ave = $27,000/yr

10 Yr Net Cash Flow: -$95,431
2012 – sold 60 cows
- zero
Replacement Heifers
2013 – Bought 60 bred Females

Ave - $27,000/Yr

10 Yr Invisible Costs - $105,706

10 Yr Net Cash Flow: -$102,284
Drought Strategy:
2012 – Sell 60 Cows
 – Zero Hfr Replacement
2013 – 85 Replacement Heifers
2014 – 85 Replacement Heifers

Herd’s Annual Net Cash Flow

10 Yr Invisible Costs - $146,346

10 Yr Net Cash Flow: -$69,767

Years
Conclusions

• Need to break drought management strategies into:
 – De-stocking – removing cattle from grassland
 – Do-populating – Removing cattle from ranch ownership
 • De-stocking is a production decision
 • De-population is an economic decision
 – Each as it owns Management Decision Variables
Conclusions (continued)

• There are two categories of drought costs
 – Visible drought costs
 • Selling cows at fire-sale prices
 • Repopulating with purchased or raised females
 – Invisible drought costs
 • Having less calves to sell in years after the drought

• Optimal drought management strategies have to take both into account!
If you buy feed in 2012/2013, you can take advantage of good calf prices AND maintain your herd’s production capacity into the future.