Validation of CHIRPS Satellite Rainfall Estimates over East Africa

Tufa Dinku, Chris Funk, Pete Peterson, Tsegaye Tadesse, and Pietro Ceccato

International Research Institute for Climate and Society
Earth Institute | Columbia University

Project: Predicting Climatic/Hydrologic Extremes in the Greater Horn of Africa Under Evolving Climate Conditions to Support Mitigation and Adaptation Strategies

Funding: NASA grant number NNX14AD30G
I. Data
II. Results
III. Conclusion
I. Data
Satellite Data

CHIRP/S: Climate Hazard Group Infrared Precipitation with Station

- From University of California, Santa Barbara;
- TIR calibrated with TRMM
- Mean Bias-adjusted;
- 0.05-deg spatial resolution;
- Daily, pentad and dekad totals available;
- Available from 1981 to current.
Satellite Data

Satellite products compared with CHIRP/S

• **ARC** (African Rainfall Climatology) from NOAA-CPC
 - TIR + GTS station data
 - Daily @ 0.1-deg spatial resolution
 - 1983 to current

• **TAMSTA** from University of Reading (UK)
 - TIR calibrated with station
 - Mean bias-adjusted
 - Daily and dekadal @ 0.0375-deg resolution
 - 1983 to current
Station Data

Access to unprecedented number of station because of ENACTS work in Africa:

• Aims at improving availability, access and use of climate information.

• Works with NMHS to quality-control all available station data and combine them with proxies (RFE, Reanalysis)
ENACTS Countries:

Ethiopia
Gambia
Ghana
Kenya
Madagascar
Mali
Rwanda
Senegal
Tanzania
Uganda
Zambia
Station data:

ENACTS and CHIRPS Stations
Station Data

Station data:

The Challenge for CHIRPS: Declining station input

- Ethiopia
- Tanzania
- Kenya
CHIRPS(*) and Validation(+) Stations

- Validation at daily, dekadal (10day), and monthly time scale
- Data from 2006 to 2010 used for validation
II. Results
Dekadal Validation: Correlations
Dekadal Validation: Bias(%)
Dekadal Validation: Skill(Eff)
Dekadal Validation: Ethiopia

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>Eff</th>
<th>Bias</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC2</td>
<td>0.76</td>
<td>0.52</td>
<td>0.71</td>
<td>17.8</td>
</tr>
<tr>
<td>TAMSAT2</td>
<td>0.83</td>
<td>0.61</td>
<td>0.69</td>
<td>15.7</td>
</tr>
<tr>
<td>TAMSAT3</td>
<td>0.84</td>
<td>0.69</td>
<td>1.00</td>
<td>14.7</td>
</tr>
<tr>
<td>CHIRP</td>
<td>0.85</td>
<td>0.73</td>
<td>0.99</td>
<td>14.3</td>
</tr>
<tr>
<td>CHIRPS</td>
<td>0.87</td>
<td>0.75</td>
<td>0.95</td>
<td>13.4</td>
</tr>
</tbody>
</table>
Monthly Validation: Ethiopia

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>Eff</th>
<th>Bias</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC2</td>
<td>0.86</td>
<td>0.64</td>
<td>0.71</td>
<td>43.7</td>
</tr>
<tr>
<td>TAMSAT3</td>
<td>0.91</td>
<td>0.82</td>
<td>1.01</td>
<td>31.9</td>
</tr>
<tr>
<td>CHIRP</td>
<td>0.92</td>
<td>0.84</td>
<td>0.99</td>
<td>30.2</td>
</tr>
<tr>
<td>CHIRPS</td>
<td>0.93</td>
<td>0.87</td>
<td>0.96</td>
<td>26.5</td>
</tr>
</tbody>
</table>
Dekadal Comparison: Ethiopia

[Map and data visualization showing rainfall comparison over Ethiopia]
Daily Validation: Ethiopia (HSS)

TAMSAT3
Comparison with Reanalysis Products
III. Conclusion

• Both CHIRP and CHIRPS performed better than ARC and slightly better than TAMSAT.

• ARC underestimates RR over mountainous and coastal regions.

• Bias removal improved the products significantly.

• CHIRPS has a slightly better skill than CHIRP
Thank You

Tufa Dinku
tufa@iri.columbia.edu

@climatesociety

.../climatesociety