Wednesday, February 10, 2016

National Drought Mitigation Center

Comparison of Major Drought Indices: Percent of Normal

Overview: The percent of normal is a simple calculation well suited to the needs of TV weathercasters and general audiences.

Pros: Quite effective for comparing a single region or season.

Cons: Easily misunderstood, as "normal" is a mathematical construct that does not necessarily correspond with what we expect the weather to be.

The percent of normal precipitation is one of the simplest measurements of rainfall for a location. Analyses using the percent of normal are very effective when used for a single region or a single season. Percent of normal is also easily misunderstood and gives different indications of conditions, depending on the location and season. It is calculated by dividing actual precipitation by normal precipitation—typically considered to be a 30-year mean—and multiplying by 100%. This can be calculated for a variety of time scales. Usually these time scales range from a single month to a group of months representing a particular season, to an annual or water year. Normal precipitation for a specific location is considered to be 100%.

One of the disadvantages of using the percent of normal precipitation is that the mean, or average, precipitation is often not the same as the median precipitation, which is the value exceeded by 50% of the precipitation occurrences in a long-term climate record. The reason for this is that precipitation on monthly or seasonal scales does not have a normal distribution. Use of the percent of normal comparison implies a normal distribution where the mean and median are considered to be the same. An example of the confusion this could create can be illustrated by the long-term precipitation record in Melbourne, Australia, for the month of January. The median January precipitation is 36.0 mm (1.4 in.), meaning that in half the years less than 36.0 mm is recorded, and in half the years more than 36.0 mm is recorded. However, a monthly January total of 36.0 mm would be only 75% of normal when compared to the mean, which is often considered to be quite dry. Because of the variety in the precipitation records over time and location, there is no way to determine the frequency of the departures from normal or compare different locations. This makes it difficult to link a value of a departure with a specific impact occurring as a result of the departure, inhibiting attempts to mitigate the risks of drought based on the departures from normal and form a plan of response (Willeke et al., 1994).

Back to the Introduction | On to the Standardized Precipitation Index

The National Drought Mitigation Center | 3310 Holdrege Street | P.O. Box 830988 | Lincoln, NE 68583–0988
phone: (402) 472–6707 | fax: (402) 472–2946 | Contact Us | Web Policy

University of Nebraska-Lincoln
Copyright 2016 National Drought Mitigation Center